The Brezis-nirenberg Type Problem Involving the Square Root of the Laplacian

نویسنده

  • JINGGANG TAN
چکیده

We establish existence and non-existence results to the BrezisNirenberg type problem involving the square root of the Laplacian in a bounded domain with zero Dirichlet boundary condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Solutions of Nonlinear Problems Involving the Square Root of the Laplacian

We consider nonlinear elliptic problems involving a nonlocal operator: the square root of the Laplacian in a bounded domain with zero Dirichlet boundary conditions. For positive solutions to problems with power nonlinearities, we establish existence and regularity results, as well as a priori estimates of Gidas-Spruck type. In addition, among other results, we prove a symmetry theorem of Gidas-...

متن کامل

The Brezis-nirenberg Problem for Nonlocal Systems

By means of variational methods we investigate existence, non-existence as well as regularity of weak solutions for a system of nonlocal equations involving the fractional laplacian operator and with nonlinearity reaching the critical growth and interacting, in a suitable sense, with the spectrum of the operator.

متن کامل

THE BREZIS-NIRENBERG PROBLEM FOR THE FRACTIONAL p-LAPLACIAN

We obtain nontrivial solutions to the Brezis-Nirenberg problem for the fractional p-Laplacian operator, extending some results in the literature for the fractional Laplacian. The quasilinear case presents two serious new difficulties. First an explicit formula for a minimizer in the fractional Sobolev inequality is not available when p 6= 2. We get around this difficulty by working with certain...

متن کامل

The Brezis–nirenberg Problem for the Laplacian with a Singular Drift in R and S

We consider the Brezis–Nirenberg problem for the Laplacian with a singular drift for a (geodesic) ball in both R and S, 3 ≤ n ≤ 5. The singular drift we consider derives from a potential which is symmetric around the center of the (geodesic) ball. Here the potential is given by a parameter (δ say) times the logarithm of the distance to the center of the ball. In both cases we determine the exac...

متن کامل

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009